Math 217 Fall 2025 Quiz 32 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:

Let V be a vector space and let $T: V \to V$ be a linear transformation.

(a) Fix any eigenvalue λ of T. The λ -eigenspace of T is ...

Solution: Let λ be an eigenvalue of T. The λ -eigenspace of T is the subset of V defined by

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}.$$

In other words, it is the set of all eigenvectors of T with eigenvalue λ , together with the zero vector. In fact, it is a subspace of V.

(b) A scalar λ is an eigenvalue of T if . . .

Solution: A scalar $\lambda \in \mathbb{R}$ is an eigenvalue of T if there exists a nonzero vector $v \in V$ such that

$$T(v) = \lambda v.$$

(c) A basis $\mathcal B$ of V is an eigenbasis for T if . . .

Solution: A basis $\mathcal{B} = (v_1, \dots, v_n)$ of V is an eigenbasis for T if every basis vector is an eigenvector of T (possibly with different eigenvalues); that is, for each $v_j \in \mathcal{B}$ there exists a scalar λ_j such that

$$T(v_j) = \lambda_j v_j.$$

2. Suppose V is a vector space and let $V \xrightarrow{T} V$ be a linear transformation. Show that if $\mu, \lambda \in \mathbb{R}$ with $\mu \neq \lambda$, then $E_{\lambda} \cap E_{\mu} = \{0\}$.

Solution: Recall that

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}, \qquad E_{\mu} = \{ v \in V : T(v) = \mu v \}.$$

First note that $0 \in E_{\lambda}$ and $0 \in E_{\mu}$, so $0 \in E_{\lambda} \cap E_{\mu}$.

Now let $v \in E_{\lambda} \cap E_{\mu}$. Then $v \in E_{\lambda}$ and $v \in E_{\mu}$, so

$$T(v) = \lambda v$$
 and $T(v) = \mu v$.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Thus

$$\lambda v = T(v) = \mu v,$$

SO

$$(\lambda - \mu)v = 0.$$

Because $\lambda \neq \mu$, the scalar $\lambda - \mu$ is nonzero. In a vector space, if a nonzero scalar times a vector is 0, then the vector must be 0. Hence v = 0.

Therefore, the only vector in both E_{λ} and E_{μ} is the zero vector, so

$$E_{\lambda} \cap E_{\mu} = \{0\}.$$

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose V is a vector space. Every linear transformation from V to V has an eigenbasis.

Solution: FALSE.

A linear transformation need not have enough eigenvectors to form a basis.

Counterexample: Let $V = \mathbb{R}^2$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by 90° counterclockwise about the origin. In matrix form (with respect to the standard basis),

$$T(x,y) = (-y,x), \quad [T] = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Over \mathbb{R} , this transformation has no real eigenvalues and hence no real eigenvectors other than 0. Therefore, there is no eigenbasis for T (since an eigenbasis must consist of eigenvectors).

(b) Suppose V is a vector space and $\mathcal{A} = (v_1, v_2, \dots, v_k)$ is a linearly independent list of vectors. If $w \in V \setminus \text{Span}(\mathcal{A})$, then $(w, v_1, v_2, \dots, v_k)$ is linearly dependent.

Solution: FALSE.

Counterexample: Let $V = \mathbb{R}^2$ and let $v_1 = (1,0)^{\top}$, so that the list $\mathcal{A} = (v_1)$ is linearly independent. Take $w = (0,1)^{\top}$. Then $w \notin \operatorname{Span}(v_1)$.

However, the list

$$(w, v_1) = ((0, 1)^{\mathsf{T}}, (1, 0)^{\mathsf{T}})$$

is linearly independent.

Thus the list (w, v_1) is not dependent, so the given statement is false.

(c) Suppose $v, w \in \mathbb{R}^n$ are two nonzero vectors and $T: \mathbb{R}^n \to \mathbb{R}^n$ has the property that T(v) = 3v and T(w) = 5w. Then $v \cdot w = 0$.

Solution: FALSE.

Counterexample: Define a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by the matrix

$$A = \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix}.$$

Let $v = (1, 0)^{\top}$ and $w = (1, 1)^{\top}$. Then

$$T(v) = A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3v,$$

and

$$T(w) = A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 5w.$$

So v and w are eigenvectors of T with eigenvalues 3 and 5 respectively. However,

$$v \cdot w = (1,0) \cdot (1,1) = 1 \cdot 1 + 0 \cdot 1 = 1 \neq 0.$$

Thus v and w are not orthogonal, contradicting the claim.